Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(19): e202301284, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36882388

RESUMO

Ionic conduction in highly designable and porous metal-organic frameworks has been explored through the introduction of various ionic species (H+ , OH- , Li+ , etc.) using post-synthetic modification such as acid, salt, or ionic liquid incorporation. Here, we report on high ionic conductivity (σ>10-2  S cm-1 ) in a two-dimensionally (2D)-layered Ti-dobdc (Ti2 (Hdobdc)2 (H2 dobdc), H4 dobdc: 2,5-dihydroxyterephthalic acid) via LiX (X=Cl, Br, I) intercalation using mechanical mixing. The anionic species in lithium halide strongly affect the ionic conductivity and durability of conductivity. Solid-state pulsed-field gradient nuclear magnetic resonance (PFG NMR ) verified the high mobility of H+ and Li+ ions in the temperature range of 300-400 K. In particular, the insertion of Li salts improved the H+ mobility above 373 K owing to strong binding with H2 O. Furthermore, the continuous increase in Li+ mobility with temperature contributed to the retention of the overall high ionic conductivity at high temperatures.

2.
Angew Chem Int Ed Engl ; 60(37): 20173-20177, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34009706

RESUMO

Void space and functionality of the pore surface are important structural factors for proton-conductive metal-organic frameworks (MOFs) impregnated with conducting media. However, no clear study has compared their priority factors, which need to be considered when designing proton-conductive MOFs. Herein, we demonstrate the effects of void space and pore-surface modification on proton conduction in MOFs through the surface-modified isoreticular MOF-74(Ni) series [Ni2 (dobdc or dobpdc), dobdc=2,5-dihydroxy-1,4-benzenedicarboxylate and dobpdc=4,4'-dihydroxy-(1,1'-biphenyl)-3,3'-dicarboxylate]. The MOF with lower porosity with the same surface functionality showed higher proton conductivity than that with higher porosity despite including a smaller amount of conducting medium. Density functional theory calculations suggest that strong hydrogen bonding between molecules of the conducting medium at high porosity is inefficient in inducing high proton conductivity.

3.
J Am Chem Soc ; 142(15): 6861-6865, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32163272

RESUMO

Highly stable superprotonic conductivity (>10-2 S cm-1) has been achieved through the unprecedented solvent-free-coordinative urea insertion in MOF-74 [M2(dobdc), M = Ni2+, Mg2+; dobdc = 2,5-dioxido-1,4-benzenedicarboxylate] without an acidic moiety. The urea is bound to open metal sites and alters the void volume and surface functionality, which triggers a significant change in proton conductivity and diffusion mechanism. Solid-state 2H NMR revealed that the high conductivity was attributed to the strengthening of the hydrogen bonds between guest H2O induced by hydrogen bonds in the interface between H2O and the polarized coordinated urea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...